We study the Target Set Selection (TSS) problem introduced by Kempe, Kleinberg, and Tardos (2003). This problem models the propagation of influence in a network, in a sequence of rounds. A set of nodes is made "active" initially. In each subsequent round, a vertex is activated if at least a certain number of its neighbors are (already) active. In the minimization version, the goal is to activate a small set of vertices initially - a seed, or target, set - so that activation spreads to the entire graph. In the absence of a sublinear-factor algorithm for the general version, we provide a (sublinear) approximation algorithm for the bounded-round version, where the goal is to activate all the vertices in r rounds. Assuming a known conjecture on...