In this paper we study the complexity of the following problems: 1. Given a colored graph X=(V,E,c), compute a minimum cardinality set of vertices S (subset of V) such that no nontrivial automorphism of X fixes all vertices in S. A closely related problem is computing a minimum base S for a permutation group G <= S_n given by generators, i.e., a minimum cardinality subset S of [n] such that no nontrivial permutation in G fixes all elements of S. Our focus is mainly on the parameterized complexity of these problems. We show that when k=|S| is treated as parameter, then both problems are MINI[1]-hard. For the dual problems, where k=n-|S| is the parameter, we give FPT~algorithms. 2. A notion closely related to fixing is called individualiza...