We exactly settle the complexity of graph realization, graph rigidity, and graph global rigidity as applied to three types of graphs: "globally noncrossing" graphs, which avoid crossings in all of their configurations; matchstick graphs, with unit-length edges and where only noncrossing configurations are considered; and unrestricted graphs (crossings allowed) with unit edge lengths (or in the global rigidity case, edge lengths in {1,2}). We show that all nine of these questions are complete for the class Exists-R, defined by the Existential Theory of the Reals, or its complement Forall-R; in particular, each problem is (co)NP-hard. One of these nine results - that realization of unit-distance graphs is Exists-R-complete - was shown previo...