The sensitivity of a Boolean function f is the maximum, over all inputs x, of the number of sensitive coordinates of x (namely the number of Hamming neighbors of x with different f-value). The well-known sensitivity conjecture of Nisan (see also Nisan and Szegedy) states that every sensitivity-s Boolean function can be computed by a polynomial over the reals of degree s^{O(1)}. The best known upper bounds on degree, however, are exponential rather than polynomial in s. Our main result is an approximate version of the conjecture: every Boolean function with sensitivity s can be eps-approximated (in l_2) by a polynomial whose degree is s * polylog(1/eps). This is the first improvement on the folklore bound of s/eps. We prove this via a new ...