We show average-case lower bounds for explicit Boolean functions against bounded-depth threshold circuits with a superlinear number of wires. We show that for each integer d > 1, there is epsilon_d > 0 such that Parity has correlation at most 1/n^{Omega(1)} with depth-d threshold circuits which have at most n^{1+epsilon_d} wires, and the Generalized Andreev Function has correlation at most 1/2^{n^{Omega(1)}} with depth-d threshold circuits which have at most n^{1+epsilon_d} wires. Previously, only worst-case lower bounds in this setting were known [Impagliazzo/Paturi/Saks, SIAM J. Comp., 1997]. We use our ideas to make progress on several related questions. We give satisfiability algorithms beating brute force search for depth-$d$ threshol...