We present an efficient proof system for Multipoint Arithmetic Circuit Evaluation: for every arithmetic circuit C(x_1,...,x_n) of size s and degree d over a field F, and any inputs a_1,...,a_K in F}^n, - the Prover sends the Verifier the values C(a_1), ..., C(a_K) in F and a proof of ~O(K * d) length, and - the Verifier tosses poly(log(dK|F|epsilon)) coins and can check the proof in about ~O}(K * (n + d) + s) time, with probability of error less than epsilon. For small degree d, this "Merlin-Arthur" proof system (a.k.a. MA-proof system) runs in nearly-linear time, and has many applications. For example, we obtain MA-proof systems that run in c^{n} time (for various c < 2) for the Permanent, #Circuit-SAT for all sublinear-depth circuits, c...