Let H be a (non-empty) graph on n vertices, possibly containing isolated vertices. Let f_H(G) = 1 iff the input graph G on n vertices contains H as a (not necessarily induced) subgraph. Let alpha_H denote the cardinality of a maximum independent set of H. In this paper we show: Q(f_H) = Omega( sqrt{alpha_H * n}), where Q(f_H) denotes the quantum query complexity of f_H. As a consequence we obtain lower bounds for Q(f_H) in terms of several other parameters of H such as the average degree, minimum vertex cover, chromatic number, and the critical probability. We also use the above bound to show that Q(f_H) = Omega(n^{3/4}) for any H, improving on the previously best known bound of Omega(n^{2/3}) [M. Santha/A. Chi-Chih Yao, unpublished manus...