The quantitative verification of Probabilistic Automata (PA) is undecidable in general. Unary PA are a simpler model where the choice of action is fixed. Still, the quantitative verification problem is open and known to be as hard as Skolem\u27s problem, a problem on linear recurrence sequences, whose decidability is open for at least 40 years. In this paper, we approach this problem by studying the languages generated by unary PAs (as defined below), whose regularity would entail the decidability of quantitative verification. Given an initial distribution, we represent the trajectory of a unary PA over time as an infinite word over a finite alphabet, where the n-th letter represents a probability range after n steps. We extend this to a...