The Euclidean k-means problem is a classical problem that has been extensively studied in the theoretical computer science, machine learning and the computational geometry communities. In this problem, we are given a set of n points in Euclidean space R^d, and the goal is to choose k center points in R^d so that the sum of squared distances of each point to its nearest center is minimized. The best approximation algorithms for this problem include a polynomial time constant factor approximation for general k and a (1+c)-approximation which runs in time poly(n) exp(k/c). At the other extreme, the only known computational complexity result for this problem is NP-hardness [Aloise et al.\u2709]. The main difficulty in obtaining hardness results...