The gamma_2 norm of a real m by n matrix A is the minimum number t such that the column vectors of A are contained in a 0-centered ellipsoid E that in turn is contained in the hypercube [-t, t]^m. This classical quantity is polynomial-time computable and was proved by the second author and Talwar to approximate the hereditary discrepancy: it bounds the hereditary discrepancy from above and from below, up to logarithmic factors. Here we provided a simplified proof of the upper bound and show that both the upper and the lower bound are asymptotically tight in the worst case. We then demonstrate on several examples the power of the gamma_2 norm as a tool for proving lower and upper bounds in discrepancy theory. Most notably, we prove a new lo...