We present two parallel repetition theorems for the entangled value of multi-player, one-round free games (games where the inputs come from a product distribution). Our first theorem shows that for a k-player free game G with entangled value val^*(G) = 1 - epsilon, the n-fold repetition of G has entangled value val^*(G^(otimes n)) at most (1 - epsilon^(3/2))^(Omega(n/sk^4)), where s is the answer length of any player. In contrast, the best known parallel repetition theorem for the classical value of two-player free games is val(G^(otimes n)) <= (1 - epsilon^2)^(Omega(n/s)), due to Barak, et al. (RANDOM 2009). This suggests the possibility of a separation between the behavior of entangled and classical free games under parallel repetition. ...