We investigate the problem of modifying a graph into a connected graph in which the degree of each vertex satisfies a prescribed parity constraint. Let ea, ed and vd denote the operations edge addition, edge deletion and vertex deletion respectively. For any S subseteq {ea,ed,vd}, we define Connected Degree Parity Editing (S) (CDPE(S)) to be the problem that takes as input a graph G, an integer k and a function delta: V(G) -> {0,1}, and asks whether G can be modified into a connected graph H with d_H(v) = delta(v)(mod 2) for each v in V(H), using at most k operations from S. We prove that (*) if S={ea} or S={ea,ed}, then CDPE(S) can be solved in polynomial time; (*) if {vd} subseteq S subseteq {ea,ed,vd}, then CDPE(S) is NP-complete and W-h...