We study network design with a cost structure motivated by redundancy in data traffic. We are given a graph, g groups of terminals, and a universe of data packets. Each group of terminals desires a subset of the packets from its respective source. The cost of routing traffic on any edge in the network is proportional to the total size of the distinct packets that the edge carries. Our goal is to find a minimum cost routing. We focus on two settings. In the first, the collection of packet sets desired by source-sink pairs is laminar. For this setting, we present a primal-dual based 2-approximation, improving upon a logarithmic approximation due to Barman and Chawla (2012){BC12}. In the second setting, packet sets can have non-trivial interse...