In this paper, we show that the SR transformation, a computationally equivalent transformation proposed by Serbanuta and Rosu, is sound for weakly left-linear normal conditional term rewriting systems (CTRS). Here, soundness for a CTRS means that reduction of the transformed unconditional term rewriting system (TRS) creates no undesired reduction for the CTRS. We first show that every reduction sequence of the transformed TRS starting with a term corresponding to the one considered on the CTRS is simulated by the reduction of the TRS obtained by the simultaneous unraveling. Then, we use the fact that the unraveling is sound for weakly left-linear normal CTRSs