This paper considers the logic FOcard, i.e., first-order logic with cardinality predicates that can specify the size of a structure modulo some number. We study the expressive power of FOcard on the class of languages of ranked, finite, labelled trees with successor relations. Our first main result characterises the class of FOcard-definable tree languages in terms of algebraic closure properties of the tree languages. As it can be effectively checked whether the language of a given tree automaton satisfies these closure properties, we obtain a decidable characterisation of the class of regular tree languages definable in FOcard. Our second main result considers first-order logic with unary relations, successor relations, and two addition...