We present several new examples of speed-ups obtainable by quantum algorithms in the context of property testing. First, motivated by sampling algorithms, we consider probability distributions given in the form of an oracle $f:[n]to[m]$. Here the probability $P_f(j)$ of an outcome $j$ in $[m]$ is the fraction of its domain that $f$ maps to $j$. We give quantum algorithms for testing whether two such distributions are identical or $epsilon$-far in $L_1$-norm. Recently, Bravyi, Hassidim, and Harrow showed that if $P_f$ and $P_g$ are both unknown (i.e., given by oracles $f$ and $g$), then this testing can be done in roughly $sqrt{m}$ quantum queries to the functions. We consider the case where the second distribution is known, and show that ...