We consider the problem of constructing bounded-degree planar geometric spanners of Euclidean and unit-disk graphs. It is well known that the Delaunay subgraph is a planar geometric spanner with stretch factor $C_{delapprox 2.42$; however, its degree may not be bounded. Our first result is a very simple linear time algorithm for constructing a subgraph of the Delaunay graph with stretch factor $ ho =1+2pi(kcos{frac{pi{k)^{-1$ and degree bounded by $k$, for any integer parameter $kgeq 14$. This result immediately implies an algorithm for constructing a planar geometric spanner of a Euclidean graph with stretch factor $ ho cdot C_{del$ and degree bounded by $k$, for any integer parameter $kgeq 14$. Moreover...