*Supported by the Grants AV ˇCR 101-97-02, 101-90-03, GA ˇCR 201-98-1449, and by the Grant of the Faculty of Civil Engineering of the Czech Technical University No. 2003.We further develop the theory of the so called Asplund functions, recently introduced and studied by W. K. Tang. Let f be an Asplund function on a Banach space X. We prove that (i) the subspace Y := sp ∂f(X) has a projectional resolution of the identity, and that (ii) if X is weakly Lindel¨of determined, then X admits a projectional resolution of the identity such that the adjoint projections restricted to Y form a projectional resolution of the identity on Y , and the dual X* admits an equivalent dual norm such that its restriction to Y is locally uniformly rotund