Datasets found in real world applications of machine learning are often characterized by low-level attributes with important interactions among them. Such interactions may increase the complexity of the learning task by limiting the usefulness of the attributes to dispersed regions of the representation space. In such cases, we say that the attributes are locally relevant. To obtain adequate performance with locally relevant attributes, the learning algorithm must be able to analyse the interacting attributes simultaneously and fit an appropriate model for the type of interactions observed. This is a complex task that surpasses the ability of most existing machine learning systems. This research proposes a solution to this problem by extend...