For the two-sample location problem, two types of tests are considered, linear rank tests with various scores, but also some tests based on U-statistics. For both types adaptive tests as well as max-type tests are constructed and their asymptotic and finite power properties are investigated. It turns out that both the adaptive tests have a larger asymptotic power than the max-type tests. For small sample sizes, however, some of the max-type tests are preferable. U-statistics are convenient if extreme densities may occur.Adaptive tests U-statistics Max-type tests Linear rank tests Asymptotic power
The problem of testing the hypothesis of independence against multiparametrical set of alternatives ...
[Stoimenova Eugenia; Стоименова Евгения]This paper deals with a class of nonparametric two-sample te...
The two sample scale problem is addressed within the rank framework which does not require to specif...
For the two-sample location problem we first consider two types of tests, linear rank tests with va...
For the non-parametric two-sample location problem, adaptive tests based on a selector statistic are...
For the two-sample location problem we consider a general class of tests, all members of it are base...
When carrying out data analysis, a practitioner has to decide on a suitable test for hypothesis test...
An extension of the omnibus test statistic of Ebner et al. [A new omnibus test of fit based on a cha...
Consider testing the null hypothesis that a given population has location parameter greater than or ...
This paper deals with a class of nonparametric two-sample tests for location, scale and more higher ...
summary:The problem of testing hypothesis of randomness against a group of alternatives of regressio...
A class of tests based on U-statistic is proposed for two-sample scale problem. The U-statistic is f...
In some areas, e.g., statistical genetics, it is common to apply a maximum test, where the maximum o...
Although linear rank statistics for the two-sample problem are distribution free tests, their power ...
A class of distribution-free tests for two-sample location problem is based on the signs of most ex...
The problem of testing the hypothesis of independence against multiparametrical set of alternatives ...
[Stoimenova Eugenia; Стоименова Евгения]This paper deals with a class of nonparametric two-sample te...
The two sample scale problem is addressed within the rank framework which does not require to specif...
For the two-sample location problem we first consider two types of tests, linear rank tests with va...
For the non-parametric two-sample location problem, adaptive tests based on a selector statistic are...
For the two-sample location problem we consider a general class of tests, all members of it are base...
When carrying out data analysis, a practitioner has to decide on a suitable test for hypothesis test...
An extension of the omnibus test statistic of Ebner et al. [A new omnibus test of fit based on a cha...
Consider testing the null hypothesis that a given population has location parameter greater than or ...
This paper deals with a class of nonparametric two-sample tests for location, scale and more higher ...
summary:The problem of testing hypothesis of randomness against a group of alternatives of regressio...
A class of tests based on U-statistic is proposed for two-sample scale problem. The U-statistic is f...
In some areas, e.g., statistical genetics, it is common to apply a maximum test, where the maximum o...
Although linear rank statistics for the two-sample problem are distribution free tests, their power ...
A class of distribution-free tests for two-sample location problem is based on the signs of most ex...
The problem of testing the hypothesis of independence against multiparametrical set of alternatives ...
[Stoimenova Eugenia; Стоименова Евгения]This paper deals with a class of nonparametric two-sample te...
The two sample scale problem is addressed within the rank framework which does not require to specif...