Gibbs random fields (GRF) are polymorphous statistical models that can be used to analyse di®erent types of dependence, in particular for spatially correlated data. However, when those models are faced with the challenge of selecting a dependence structure from many, the use of standard model choice methods is hampered by the unavailability of the normalising constant in the Gibbs likelihood. In particular, from a Bayesian perspective, the computation of the posterior probabilities of the models under competition requires special likelihood-free simulation techniques like the Approximate Bayesian Computation (ABC) algorithm that is intensively used in population genetics. We show in this paper how to implement an ABC algorithm geared toward...
Approximate Bayesian computation (ABC) have become a essential tool for the analysis of complex stoc...
La constante de normalisation des champs de Markov se présente sous la forme d'une intégrale hauteme...
La constante de normalisation des champs de Markov se présente sous la forme d'une intégrale hauteme...
Gibbs random fields are polymorphous statistical models that can be used to analyse different types ...
Approximate Bayesian computation (ABC), also known as likelihood-free methods, have become a favouri...
Approximate Bayesian computation (ABC), also known as likelihood-free methods, have become a favouri...
National audienceOn s'intéresse au problème du choix bayésien de modèles de champs de Gibbs. Ce choi...
National audienceOn s'intéresse au problème du choix bayésien de modèles de champs de Gibbs. Ce choi...
Motivation: Approximate Bayesian computation (ABC) methods provide an elaborate approach to Bayesian...
International audienceSelecting between different dependency structures of hidden Markov random fiel...
Motivation: Approximate Bayesian computation (ABC) methods provide an elaborate approach to Bayesian...
Bayesian inference of Gibbs random fields (GRFs) is often referred to as a doubly intractable proble...
Bayesian inference of Gibbs random fields (GRFs) is often referred to as a doubly intractable proble...
International audienceApproximate Bayesian computation (ABC) methods provide an elaborate approach t...
Approximate Bayesian computation (ABC) have become an essential tool for the analysis of complex sto...
Approximate Bayesian computation (ABC) have become a essential tool for the analysis of complex stoc...
La constante de normalisation des champs de Markov se présente sous la forme d'une intégrale hauteme...
La constante de normalisation des champs de Markov se présente sous la forme d'une intégrale hauteme...
Gibbs random fields are polymorphous statistical models that can be used to analyse different types ...
Approximate Bayesian computation (ABC), also known as likelihood-free methods, have become a favouri...
Approximate Bayesian computation (ABC), also known as likelihood-free methods, have become a favouri...
National audienceOn s'intéresse au problème du choix bayésien de modèles de champs de Gibbs. Ce choi...
National audienceOn s'intéresse au problème du choix bayésien de modèles de champs de Gibbs. Ce choi...
Motivation: Approximate Bayesian computation (ABC) methods provide an elaborate approach to Bayesian...
International audienceSelecting between different dependency structures of hidden Markov random fiel...
Motivation: Approximate Bayesian computation (ABC) methods provide an elaborate approach to Bayesian...
Bayesian inference of Gibbs random fields (GRFs) is often referred to as a doubly intractable proble...
Bayesian inference of Gibbs random fields (GRFs) is often referred to as a doubly intractable proble...
International audienceApproximate Bayesian computation (ABC) methods provide an elaborate approach t...
Approximate Bayesian computation (ABC) have become an essential tool for the analysis of complex sto...
Approximate Bayesian computation (ABC) have become a essential tool for the analysis of complex stoc...
La constante de normalisation des champs de Markov se présente sous la forme d'une intégrale hauteme...
La constante de normalisation des champs de Markov se présente sous la forme d'une intégrale hauteme...