We use the continuous and intense (∼107 W) infrasound produced by Volcan Villarrica (Chile) to invert for the local dynamic wind and temperature structure of the atmosphere. Infrasound arrays deployed in March 2011 at the summit (2826 m) and on the NNW flank (∼8 km distant at 825 m) were used to track infrasound propagation times and signal power. We model an atmosphere with vertically varying temperature and horizontal winds and use propagation times (ranging from 23 to 24 s) to invert for horizontal slowness (2.75–2.94 s/km) and average effective sound speeds (328–346 m/s) for NNW propagating infrasound. The corresponding ratio of recorded acoustic power at proximal versus distal arrays was also variable (ranging between 0.15 to 1.5 for t...