Twinning is the primary deformation mechanism in magnetic shape memory alloys (MSMAs). Obstacles such as inclusions, precipitates and defects hinder or even prevent twin boundary motion in the bulk of Ni–Mn–Ga MSMA single crystals. Here, we study the effect of surface damage on the mechanical properties and twin structure of Ni–Mn–Ga single crystals. Any methods that produce defects may be considered for modifying the near-surface microstructure. In this study deformations were produced by grinding and mechanical polishing using abrasive particles. The amount of damage was characterized with X-ray diffraction: damage causes peak broadening. Deformation and damage localized near the surface increases the twinning stress. Surface damage stabi...