Most linear matrix inequality (LMI) fuzzy control results in literature are valid for any membership function, i.e., independent of the actual membership shape. Hence, they are conservative (with respect to other nonlinear control approaches) when specific knowledge of the shapes is available. This paper presents relaxed LMI conditions for fuzzy control that incorporate such shape information in the form of polynomial constraints, generalizing previous works by the authors. Interesting particular cases are overlap (product) bounds and ellipsoidal regions. Numerical examples illustrate the achieved improvements, as well as the possibilities of solving some multiobjective problems. The results also apply to polynomial-in-membership...