This paper introduces the general-purpose Gaussian transform of distributions, which aims at representing a generic symmetric distribution as an infinite mixture of Gaussian distributions. We start by the mathematical formulation of the problem and continue with the investigation of the conditions of existence of such a transform. Our analysis leads to the derivation of analytical and numerical tools for the computation of the Gaussian transform, mainly based on the Laplace and Fourier transforms, as well as of the afferent properties set (e.g., the transform of sums of independent variables). The Gaussian transform of distributions is then analytically derived for the Gaussian and Laplacian distributions, and obtained numerically for the g...