International audienceRepair of DNA damage is essential for the maintenance of the integrity and transmission of the genome in development and reproduction. Telomeres are nucleoprotein structures which protect the ends of (linear) eukaryotic chromosomes. Telomere dysfunction results in loss of this protection and the telomeres being recognised as DNA damage by the cellular DNA Damage Repair and Response (DDR) machinery, leading to senescence or cell death. Telomeric homeostasis is thus tightly controlled and many specific and non-specific proteins are involved in its regulation. Among these, DNA damage and Repair proteins contribute both to the recognition of telomere dysfunction and more surprisingly, are directly implicated in telomere ho...