We study the structure of the eigenstates and the dynamics of a system that undergoes an excited state quantum phase transition (ESQPT). The analysis is performed for two-level pairing models characterized by a U(n + 1) algebraic structure. They exhibit a second order phase transition between two limiting dynamical symmetries represented by the U(n) and SO(n + 1) subalgebras. They are, or can be mapped onto, models of interacting bosons. We show that the eigenstates with energies very close to the ESQPT critical point, EESQPT, are highly localized in the U(n)-basis. Consequently, the dynamics of a system initially prepared in a U(n)-basis vector with energy E EESQPT may be extremely slow. Signatures of an ESQPT can therefore be foun...
The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator ...
Comunicación presentada a: Meeting on Beauty in Physics - Theory and Experiment in Honor of Francesc...
Understanding the non-equilibrium behavior of quantum systems is a major goal of contemporary physic...
We review the effects of excited-state quantum phase transitions (ESQPTs) in interacting many-body s...
We analyze excited-state quantum phase transitions (ESQPTs) in three schematic (integrable and noni...
Dynamics of externally driven quantum systems Jakub Dolejší Abstract We present the concept of an ex...
We review recent advances in understanding the universal scaling properties of non‐equilibrium phase...
We propose that a broad class of excited-state quantum phase transitions (ESQPTs) gives rise to two ...
The dynamics of a quantum system following a sudden, highly nonadiabatic change of its control param...
Quantum quench dynamics is considered in a one dimensional unitary matrix model with a single trace ...
During recent years the interest to dynamics of quantum systems has grown considerably. Quantum many...
Abstract Transmon qubits are the predominant element in circuit-based quantum information processing...
We study dynamical phase transitions (DPTs) in quantum many-body systems with infinite-range interac...
8 pags., 6 figs., 1 app.We examine how the presence of an excited-state quantum phase transition man...
Many body models undergoing a quantum phase transition to a broken-symmetry phase that survives up t...
The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator ...
Comunicación presentada a: Meeting on Beauty in Physics - Theory and Experiment in Honor of Francesc...
Understanding the non-equilibrium behavior of quantum systems is a major goal of contemporary physic...
We review the effects of excited-state quantum phase transitions (ESQPTs) in interacting many-body s...
We analyze excited-state quantum phase transitions (ESQPTs) in three schematic (integrable and noni...
Dynamics of externally driven quantum systems Jakub Dolejší Abstract We present the concept of an ex...
We review recent advances in understanding the universal scaling properties of non‐equilibrium phase...
We propose that a broad class of excited-state quantum phase transitions (ESQPTs) gives rise to two ...
The dynamics of a quantum system following a sudden, highly nonadiabatic change of its control param...
Quantum quench dynamics is considered in a one dimensional unitary matrix model with a single trace ...
During recent years the interest to dynamics of quantum systems has grown considerably. Quantum many...
Abstract Transmon qubits are the predominant element in circuit-based quantum information processing...
We study dynamical phase transitions (DPTs) in quantum many-body systems with infinite-range interac...
8 pags., 6 figs., 1 app.We examine how the presence of an excited-state quantum phase transition man...
Many body models undergoing a quantum phase transition to a broken-symmetry phase that survives up t...
The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator ...
Comunicación presentada a: Meeting on Beauty in Physics - Theory and Experiment in Honor of Francesc...
Understanding the non-equilibrium behavior of quantum systems is a major goal of contemporary physic...