Let V be a finite vector space of dimension n over the field K. A hyperplane in V is an n − 1 dimensional subspace of V defined by an equation of the form∑ni=1 aixi = 0, ai ∈ K, (x1, ..., xn) ∈ V . A hyperplane arrangement is any finite collectionof hyperplanes. This work focuses on some hyperplanes arrangements such as the braid and the graphical arrangement {xi − xj = 0 : 1 ≤ i \u3c j ≤ n}, the shi arrangement {xi − xj = 1 : 1 ≤ i \u3c j ≤ n}, the threshold arrangement {xi + xj = 0 : 1 ≤ i \u3c j ≤ n}, and the complete arrangement {∑i∈S xi = 0 : S ⊆ [n]}. The graphical arrangement is a subarrangement of the threshold arrangement. Chapter 1 gives an introductory overview of the entire work, the significance of hyperplane arrangements, and ...