We consider the spaces $\mathcal{F}_\mu$ of polynomial $\mu$-densities on the line as $\mathfrak{sl}(2)$-modules and then we compute the cohomological spaces $\mathrm{H}^2_\mathrm{diff}(\mathfrak{sl}(2), \mathcal{D}_{\bar{\lambda},\mu})$, where $\mu\in \mathbb{R}$, $\bar{\lambda}=(\lambda_1,\dots,\lambda_n) \in\mathbb{R}^n$ and $\mathcal{D}_{\bar{\lambda},\mu}$ is the space of $n$-ary differential operators from $\mathcal{F}_{\lambda_1}\otimes\cdots\otimes \mathcal{F}_{\lambda_n}$ to $\mathcal{F}_\mu$.Comment: 15 page
AbstractLet Iτ be the Tychonoff cube of weight τ⩾ω with a fixed point, στ and Στ be the corresponden...
AbstractLet f∈C(R). We are interested in lower and upper bounds of the integrals∫hHΔt2f(x)t1+αdt, wh...
For $p>\frac{2\lambda}{2\lambda+1}$ with $\lambda>0$, the Hardy spaces $H_{\lambda}^{p}(\mathbb{R}^{...
The theory of q-analysis has many applications in various sub-fields of mathematics and quantum phys...
Let µ be the Jacobi measure supported on the interval [1; 1]. Let introduce the Sobolev-type inner ...
Assuming $\rfs{MA} + \aleph_1 < 2^{\aleph_0}$, we show that, for any $\kappa,\lambda < 2^{\aleph_0}...
AbstractIf A is a sectorial operator on a Banach space X, then the space C([0,1];(X,D(A))θ,∞) is a s...
AbstractWe characterize the pointwise multipliers which maps a Sobolev space H˙r(Rd) to a Sobolev sp...
AbstractFor expansion by Jacobi polynomials we relate smoothness given by appropriate K-functionals ...
In this paper, we introduce a distributional family K_{α,β} which is related to the Diamond operator...
於 城崎国際アートセンター(2018年10月22日-10月26日)平成30年度科学研究費補助金 基盤研究(S)(課題番号15H05738, 代表 金銅誠之), 平成30年度科学研究費補助金 基盤研究(...
AbstractIn this paper, we obtain the exact values of n-widths of some classes of periodic differenti...
Using a generalized translation operator, we obtain an analog of Younis' theorem [Theorem 5.2, Youni...
AbstractWe consider a differential-difference operator Λα,β, α⩾β⩾-12, α≠-12 on ]-π2,π2[. The eigenfu...
AbstractIn the paper, we generalize some congruences of Lehmer and prove that for any positive integ...
AbstractLet Iτ be the Tychonoff cube of weight τ⩾ω with a fixed point, στ and Στ be the corresponden...
AbstractLet f∈C(R). We are interested in lower and upper bounds of the integrals∫hHΔt2f(x)t1+αdt, wh...
For $p>\frac{2\lambda}{2\lambda+1}$ with $\lambda>0$, the Hardy spaces $H_{\lambda}^{p}(\mathbb{R}^{...
The theory of q-analysis has many applications in various sub-fields of mathematics and quantum phys...
Let µ be the Jacobi measure supported on the interval [1; 1]. Let introduce the Sobolev-type inner ...
Assuming $\rfs{MA} + \aleph_1 < 2^{\aleph_0}$, we show that, for any $\kappa,\lambda < 2^{\aleph_0}...
AbstractIf A is a sectorial operator on a Banach space X, then the space C([0,1];(X,D(A))θ,∞) is a s...
AbstractWe characterize the pointwise multipliers which maps a Sobolev space H˙r(Rd) to a Sobolev sp...
AbstractFor expansion by Jacobi polynomials we relate smoothness given by appropriate K-functionals ...
In this paper, we introduce a distributional family K_{α,β} which is related to the Diamond operator...
於 城崎国際アートセンター(2018年10月22日-10月26日)平成30年度科学研究費補助金 基盤研究(S)(課題番号15H05738, 代表 金銅誠之), 平成30年度科学研究費補助金 基盤研究(...
AbstractIn this paper, we obtain the exact values of n-widths of some classes of periodic differenti...
Using a generalized translation operator, we obtain an analog of Younis' theorem [Theorem 5.2, Youni...
AbstractWe consider a differential-difference operator Λα,β, α⩾β⩾-12, α≠-12 on ]-π2,π2[. The eigenfu...
AbstractIn the paper, we generalize some congruences of Lehmer and prove that for any positive integ...
AbstractLet Iτ be the Tychonoff cube of weight τ⩾ω with a fixed point, στ and Στ be the corresponden...
AbstractLet f∈C(R). We are interested in lower and upper bounds of the integrals∫hHΔt2f(x)t1+αdt, wh...
For $p>\frac{2\lambda}{2\lambda+1}$ with $\lambda>0$, the Hardy spaces $H_{\lambda}^{p}(\mathbb{R}^{...