Plasmonic nanostructures are, to date, well-known to offer unique possibilities for the tailoring of light–matter interactions at the nanoscale. Most recently, a new route to ultrafast all-optical modulation has been disclosed by combining the resonant features of plasmonic nanostructures with the giant third-order optical nonlinearity of noble metals regulated by highly energetic (hot) carriers. In this framework, a variety of nanostructures have been designed, with special attention to shapes featuring tips, where extreme and highly sensitive field enhancements (hot spots) can be attained. Here, we report on a broadband pump–probe spectroscopy analysis of an ensemble of spiky star-shaped nanoparticles, exploring both the perturbative and ...