The complex interplay of spin, charge, orbital and lattice degrees of freedom provides a plethora of exotic phases and physical phenomena1,2,3,4,5. In recent years, complex spin topologies have emerged as a consequence of the electronic band structure and the interplay between spin and spin–orbit coupling in materials6,7. Here we produce complex topologies of electrical polarization—namely, nanometre-scale vortex–antivortex (that is, clockwise–anticlockwise) arrays that are reminiscent of rotational spin topologies6—by making use of the competition between charge, orbital and lattice degrees of freedom in superlattices of alternating lead titanate and strontium titanate layers. Atomic-scale mapping of the polar atomic displacements by scann...