In Kolmogorov’s phenomenological theory of turbulence, the energy spectrum in the inertial range scales with the wave number k as k−5/3 and extends up to a dissipation wave number kν, which is given in terms of the energy dissipation rate ϵ and viscosity ν by kν∝(ϵ/ν3)1/4. This result leads to Landau’s heuristic estimate for the number of degrees of freedom that scales as Re9/4, where Re is the Reynolds number. Here we consider the possibility of establishing a quantitative basis for these results from first principles. In particular, we examine the extent to which they can be derived from the three-dimensional Navier–Stokes system, making use of Kolmogorov’s hypothesis of finite and viscosity-independent energy dissipation only. It is foun...
We seek to understand the kinetic energy spectrum in the dissipation range of fully developed turbul...
Turbulence is a ubiquitous state for many flows in nature and engineering. As the flow velocity is i...
A defining feature of 3D hydrodynamic turbulence is that the rate of energy dissipation is bounded a...
In Kolmogorov’s phenomenological theory of turbulence, the energy spectrum in the inertial range sca...
The hydrodynamics of Newtonian fluids has been the subject of a tremendous amount of work over the p...
It is pointed out if there are aspects of the turbulence phenomenon which are truly universal, then ...
High resolution, direct numerical simulations of the three-dimensional incompressible Navier-Stokes ...
Let u(x, t) be a (possibly weak) solution of the Navier- Stokes equations on all of R3, or on the to...
Turbulence is one of the important problems in classical physics that still remain unsolved. The Nav...
International audienceThe hydrodynamics of Newtonian fluids has been the subject of a tremendous amo...
The asymptotic energy dissipation is connected to the third-order scaling of the longitudinal veloci...
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) projec...
Using volumetric velocity data from a turbulent laboratory water flow and numerical simulations of h...
Kolmogorov's first similarity hypothesis (or KSH1) stipulates that two-point statistics have a unive...
Presents a new approach to the Navier-Stokes turbulence. With the Gaussian soft constraint on the Na...
We seek to understand the kinetic energy spectrum in the dissipation range of fully developed turbul...
Turbulence is a ubiquitous state for many flows in nature and engineering. As the flow velocity is i...
A defining feature of 3D hydrodynamic turbulence is that the rate of energy dissipation is bounded a...
In Kolmogorov’s phenomenological theory of turbulence, the energy spectrum in the inertial range sca...
The hydrodynamics of Newtonian fluids has been the subject of a tremendous amount of work over the p...
It is pointed out if there are aspects of the turbulence phenomenon which are truly universal, then ...
High resolution, direct numerical simulations of the three-dimensional incompressible Navier-Stokes ...
Let u(x, t) be a (possibly weak) solution of the Navier- Stokes equations on all of R3, or on the to...
Turbulence is one of the important problems in classical physics that still remain unsolved. The Nav...
International audienceThe hydrodynamics of Newtonian fluids has been the subject of a tremendous amo...
The asymptotic energy dissipation is connected to the third-order scaling of the longitudinal veloci...
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) projec...
Using volumetric velocity data from a turbulent laboratory water flow and numerical simulations of h...
Kolmogorov's first similarity hypothesis (or KSH1) stipulates that two-point statistics have a unive...
Presents a new approach to the Navier-Stokes turbulence. With the Gaussian soft constraint on the Na...
We seek to understand the kinetic energy spectrum in the dissipation range of fully developed turbul...
Turbulence is a ubiquitous state for many flows in nature and engineering. As the flow velocity is i...
A defining feature of 3D hydrodynamic turbulence is that the rate of energy dissipation is bounded a...