Research background: In the literature little discussion was made about predicting state of time series in daily manner. The ability to recognize the state of a time series gives, for example, an opportunity to measure the level of risk in a state of tranquility and a state of turbulence independently, which can provide more accurate measurements of the market risk in a financial institution. Purpose of the article: The aim of article is to find an appropriate tools to predict, based on today's economic situation, the state, in which time series of financial data will be tomorrow. Methods: This paper proposes an approach to predict states (states of tranquillity and turbulence) for a current portfolio in a one-day horizon. The prediction ...