The past decade has been witnessing remarkable advancements in computer vision and deep learning algorithms, ushering in a transformative wave of large-scale edge applications across various industries. These image processing methods, however, still encounter numerous challenges when it comes to meeting real-world demands, especially in terms of accuracy and latency at scale. Indeed, striking a balance among efficiency, robustness, and scalability remains a common obstacle. This dissertation investigates these issues in the context of different computer vision tasks, including image classification, semantic segmentation, depth estimation, and object detection. We introduce novel solutions, focusing on utilizing adjustable neural networks, j...