One of the models that can be used to predict time series data is the Bayesian Structural Time Series (BSTS) model. The BSTS model is a more modern model and can handle data movement better. In the BSTS model, the Markov Chain Monte Carlo (MCMC) sampling algorithm is used to simulate the posterior distribution, which smoothes the forecasting results over a large number of potential models using Bayesian averaging models. The purpose of this study was to obtain the best BSTS model for Composite Stock Price Index (CSPI) data in Indonesia based on the state component and the number of MCMC iterations, and obtain forecasting results for CSPI value in Indonesia for the next 24 months, namely the period July 2023 to June 2024. The results obtaine...