This work presents the fabrication and characterization of a triple-layered biomimetic muscle constituted by polypyrrole (PPy)-dodecylbenzenesulfonate (DBS)/adhesive tape/PPy-DBS demonstrating simultaneous sensing and actuation capabilities. The muscle was controlled by a neurobiologically inspired cortical neural network sending agonist and antagonist signals to the conducting polymeric layers. Experiments consisted of controlled voluntary movements of the free end of the muscle at angles of ±20°, ±30°, and ±40° while monitoring the muscle’s potential response. Results show the muscle’s potential varies linearly with applied current amplitude during actuation, enabling current sensing. A linear dependence between muscle potential and tempe...