The recent advent and evolution of deep learning models and pre-trained embedding techniques have created a breakthrough in supervised learning. Typically, we expect that adding more labeled data improves the predictive performance of supervised models. On the other hand, collecting more labeled data is not an easy task due to several difficulties, such as manual labor costs, data privacy, and computational constraint. Hence, a comprehensive study on the relation between training set size and the classification performance of different methods could be essentially useful in the selection of a learning model for a specific task. However, the literature lacks such a thorough and systematic study. In this paper, we concentrate on this relation...