This paper presents numerical modeling and experimental validation of the signal path loss at the 5.8 GHz Industrial, Scientific, and Medical (ISM) band, performed in the context of fat-intrabody communication (fat-IBC), a novel intrabody communication platform using the body-omnipresent fat tissue as the key wave-guiding medium. Such work extends our previous works at 2.0 and 2.4 GHz in the characterization of its performance in other useful frequency range. In addition, this paper also includes studies of both static and dynamic human body movements. In order to provide with a more comprehensive characterization of the communication performance at this frequency, this work focuses on investigating the path loss at different configurations...