International audienceChange detection is an important task to rapidly identify modified areas, in particular when multi-temporal data are concerned. In landscapes with complex geometry such as urban environment, vertical information turn out to be a very useful knowledge not only to highlight changes but also to classify them into different categories. In this paper, we focus on change segmentation directly using raw 3D point clouds (PCs), to avoid any loss of information due to rasterization processes. While deep learning has recently proved its effectiveness for this particular task by encoding the information through Siamese networks, we investigate here the idea of also using change information in early steps of deep networks. To do th...