International audienceWe consider a Bolza type optimal control problem of the form [see formula in PDF] Subject to: [see formula in PDF] where Λ( s , y , u ) is locally Lipschitz in s , just Borel in ( y , u ), b has at most a linear growth and both the Lagrangian Λ and the end-point cost function g may take the value +∞. If b ≡ 1, g ≡ 0, ( P t, x ) is the classical problem of the Calculus of Variations. We suppose the validity of a slow growth condition in u , introduced by Clarke in 1993, including Lagrangians of the type [see formula in PDF] and [see formula in PDF] and the superlinear case. We show that, if Λ is real valued, any family of optimal pairs ( y *, u *) for (P t,x ) whose energy J t ( y *, u *) is equi-boundcd as ( t, x ) var...