The precise assembly of multiple biomacromolecules into well-defined structures and materials is of great importance for various biomedical and nanobiotechnological applications. In this study, we investigate the assembly requirements for two-component materials using charged protein nanocages as building blocks. To achieve this, we designed several variants of ferritin nanocages to determine the surface characteristics necessary for the formation of large-scale binary three-dimensional (3D) assemblies. These nanocage variants were employed in protein crystallization experiments and macromolecular crystallography analyses, complemented by computational methods. Through the screening of nanocage variant combinations at various ionic strength...