We prove uniqueness of least-energy solutions for a class of semilinear equations driven by the fractional laplacian, under homogeneous Dirichlet exterior conditions, when the underlying domain is a ball $B \subset \mathbb{R}^N$. The nonlinearity is of the form $$ f(u) = \lambda u + u^p,$$ where $p$ is superlinear and subcritical, and $\lambda < \lambda_1(B)$, where $\lambda_1(B)$ is the first eigenvalue of the fractional laplacian in $B$. For $\lambda= 0$, we recover the fractional Lane-Emden equation. The proof makes use of Morse theory, and is inspired by some results obtained by C. S. Lin in the '90s
We study the sharp constant for the embedding of $W^{1,p}_0(\Omega)$ into $L^q(\Omega)$, in the case...
We consider a nonlinear pseudo-di erential equation driven by the fractional p-Laplacian (−∆)sp with...
We study the nodal solutions of the Lane-Emden-Dirichlet problem{-Δu=|u|p-1u,in Ω,u=0,on ∂Ω, where Ω...
We establish sharp energy estimates for some solutions, such as global minimizers, monotone solution...
In this paper, we solve the fractional Lane-Emden equation in the Serrin's critical case for the fra...
We study a Dirichlet boundary value problem for Lane-Emden equation involving two fractional orders....
We prove uniqueness of ground state solutions Q = Q(|x|) ≥ 0 of the non-linear equation (−Δ)^sQ+Q−Q^...
We study the isolated singularities of functions satisfying (E) (−∆) s v±|v| p−1 v = 0 in Ω\{0}, v =...
International audienceWe classify solutions of finite Morse index of the fractional Lane-Emden equat...
We consider the classical Lane Emden equation in bounded domains of the plane with Dirichlet boundar...
In this article, we establish the existence of a least energy sign-changing solution for nonlinear ...
In this paper, we consider the Lane-Emden problem [GRAPHICS] where is a bounded domain in R-N and p ...
none2siWe establish sharp energy estimates for some solutions, such as global minimizers, monotone s...
Our purpose of this paper is to consider Liouville property for the fractional Lane-Emden equatio
We classify solutions of finite Morse index of the fractional Lane-Emden equation (-Δ)su = |u|p-1u i...
We study the sharp constant for the embedding of $W^{1,p}_0(\Omega)$ into $L^q(\Omega)$, in the case...
We consider a nonlinear pseudo-di erential equation driven by the fractional p-Laplacian (−∆)sp with...
We study the nodal solutions of the Lane-Emden-Dirichlet problem{-Δu=|u|p-1u,in Ω,u=0,on ∂Ω, where Ω...
We establish sharp energy estimates for some solutions, such as global minimizers, monotone solution...
In this paper, we solve the fractional Lane-Emden equation in the Serrin's critical case for the fra...
We study a Dirichlet boundary value problem for Lane-Emden equation involving two fractional orders....
We prove uniqueness of ground state solutions Q = Q(|x|) ≥ 0 of the non-linear equation (−Δ)^sQ+Q−Q^...
We study the isolated singularities of functions satisfying (E) (−∆) s v±|v| p−1 v = 0 in Ω\{0}, v =...
International audienceWe classify solutions of finite Morse index of the fractional Lane-Emden equat...
We consider the classical Lane Emden equation in bounded domains of the plane with Dirichlet boundar...
In this article, we establish the existence of a least energy sign-changing solution for nonlinear ...
In this paper, we consider the Lane-Emden problem [GRAPHICS] where is a bounded domain in R-N and p ...
none2siWe establish sharp energy estimates for some solutions, such as global minimizers, monotone s...
Our purpose of this paper is to consider Liouville property for the fractional Lane-Emden equatio
We classify solutions of finite Morse index of the fractional Lane-Emden equation (-Δ)su = |u|p-1u i...
We study the sharp constant for the embedding of $W^{1,p}_0(\Omega)$ into $L^q(\Omega)$, in the case...
We consider a nonlinear pseudo-di erential equation driven by the fractional p-Laplacian (−∆)sp with...
We study the nodal solutions of the Lane-Emden-Dirichlet problem{-Δu=|u|p-1u,in Ω,u=0,on ∂Ω, where Ω...