Dans ce texte, nous considérons un modèle autorégressif d’ordre p (où p ≥ 1) gaussien, possiblement non stationnaire, avec un terme constant (tendance). Nous développons des méthodes d’inférence exactes pour les coefficients de ce modèle. Nous proposons une méthode qui permet de tester n’importe quelle hypothèse qui fixe le vecteur complet des coefficients autorégressifs du modèle puis, en « inversant » ces tests, de construire une région de confiance conjointe pour les coefficients du vecteur. Chaque hypothèse est testée en transformant d’abord les observations de façon à faire disparaître toute autocorrélation sous l’hypothèse nulle puis en testant si les observations transformées sont indépendantes. Pour ce faire, nous combinons plusieur...