Quasi-Variationsungleichungen (QVIs) treten in einer Vielzahl mathematischer Modelle auf, welche komplexe Equilibrium-artige Phänomene aus den Natur- oder Sozialwissenschaften beschreiben. Obgleich ihrer vielfältigen Anwendungsmöglichkeiten in Bereichen wie der Biologie, Kontinuumsmechanik, Physik, Geologie und Ökonomie sind Ergebnisse zur allgemeinen theoretischen und algorithmischen Lösung von QVIs in der Literatur eher rar gesät – insbesondere im unendlich-dimensionalen Kontext. Zentraler Gegenstand dieser Dissertation sind elliptische QVIs vom Hindernis-Typ mit einer zusätzlichen Volumen-Nebenbedingung, die durch ein vereinfachtes Modell eines nachgiebigen Hindernisses aus der Biomedizin motiviert werden. Aussagen zur Existenz von Lösu...
In this short note, we prove that the minimal and maximal solution maps associated to elliptic quasi...
We deal with the numerical analysis of a system of elliptic quasivariational inequal-ities (QVIs). U...
This survey on stationary and evolutionary problems with gradient constraints is based on developmen...
We consider state-of-the-art methods, theoretical limitations, and open problems in elliptic Quasi-V...
We consider state-of-the-art methods, theoretical limitations, and open problems in elliptic Quasi-V...
A class of abstract nonlinear evolution quasi-variational inequality (QVI) problems in function spac...
For a class of quasivariational inequalities (QVIs) of obstacle-type the stability of its solution s...
For a class of quasivariational inequalities (QVIs) of obstacle-type the stability of its solution s...
The directional differentiability of the solution map of obstacle type quasi-variational inequalitie...
A class of nonlinear elliptic quasi-variational inequality (QVI) problems with gra-dient constraints...
A class of nonlinear elliptic quasi-variational inequality (QVI) problems with gradientconstraints i...
The directional differentiability of the solution map of obstacle type quasi-variational inequalitie...
We focus on elliptic quasi-variational inequalities (QVIs) of obstacle type and prove a number of re...
We focus on elliptic quasi-variational inequalities (QVIs) of obstacle type and prove a number of re...
In this short note, we prove that the minimal and maximal solution maps associated to elliptic quasi...
In this short note, we prove that the minimal and maximal solution maps associated to elliptic quasi...
We deal with the numerical analysis of a system of elliptic quasivariational inequal-ities (QVIs). U...
This survey on stationary and evolutionary problems with gradient constraints is based on developmen...
We consider state-of-the-art methods, theoretical limitations, and open problems in elliptic Quasi-V...
We consider state-of-the-art methods, theoretical limitations, and open problems in elliptic Quasi-V...
A class of abstract nonlinear evolution quasi-variational inequality (QVI) problems in function spac...
For a class of quasivariational inequalities (QVIs) of obstacle-type the stability of its solution s...
For a class of quasivariational inequalities (QVIs) of obstacle-type the stability of its solution s...
The directional differentiability of the solution map of obstacle type quasi-variational inequalitie...
A class of nonlinear elliptic quasi-variational inequality (QVI) problems with gra-dient constraints...
A class of nonlinear elliptic quasi-variational inequality (QVI) problems with gradientconstraints i...
The directional differentiability of the solution map of obstacle type quasi-variational inequalitie...
We focus on elliptic quasi-variational inequalities (QVIs) of obstacle type and prove a number of re...
We focus on elliptic quasi-variational inequalities (QVIs) of obstacle type and prove a number of re...
In this short note, we prove that the minimal and maximal solution maps associated to elliptic quasi...
In this short note, we prove that the minimal and maximal solution maps associated to elliptic quasi...
We deal with the numerical analysis of a system of elliptic quasivariational inequal-ities (QVIs). U...
This survey on stationary and evolutionary problems with gradient constraints is based on developmen...