International audienceUnderstanding the algebraic structure underlying a manifold with a general affine connection is a natural problem. In this context, A. V. Gavrilov introduced the notion of framed Lie algebra, consisting of a Lie bracket (the usual Jacobi bracket of vector fields) and a magmatic product without any compatibility relations between them. In this work we will show that an affine connection with curvature and torsion always gives rise to a post-Lie algebra as well as a D-algebra. The notions of torsion and curvature together with Gavrilov's special polynomials and double exponential are revisited in this post-Lie algebraic framework. We unfold the relations between the post-Lie Magnus expansion, the Grossman-Larson product ...