In a recently proposed graphical compression algorithm by Choi and Szpankowski (2009), the following tree arose in the course of the analysis. The root contains n balls that are consequently distributed between two subtrees according to a simple rule: In each step, all balls independently move down to the left subtree (say with probability $p$) or the right subtree (with probability 1-$p$). A new node is created as long as there is at least one ball in that node. Furthermore, a nonnegative integer $d$ is given, and at level $d$ or greater one ball is removed from the leftmost node before the balls move down to the next level. These steps are repeated until all balls are removed (i.e., after $n+d$ steps). Observe that when $d=∞$ the above tr...