This paper tackles the enumeration and asymptotics of the area below directed lattice paths (walks on $\mathbb{N}$ with a finite set of jumps). It is a nice surprise (obtained via the "kernel method'') that the generating functions of the moments of the area are algebraic functions, expressible as symmetric functions in terms of the roots of the kernel. For a large class of walks, we give full asymptotics for the average area of excursions ("discrete'' reflected Brownian bridge) and meanders ("discrete'' reflected Brownian motion). We show that drift is not playing any role in the first case. We also generalise previous works related to the number of points below a path and to the area between a path and a line of rational slope
AbstractWe count the number of lattice paths lying under a cyclically shifting piecewise linear boun...
In this lecture we will focus on techniques coming from probability theory and analysis to study mod...
In a companion article dedicated to the enumeration aspects, we showed how to obtain closed form for...
This paper tackles the enumeration and asymptotics of the area below directed lattice paths (walks o...
This talk focusses on the interaction between the kernel method, a powerful collection of techniques...
Lattice paths effectively model phenomena in chemistry, physics and probability theory. Asymptotic e...
International audienceWe analyze some enumerative and asymptotic properties of Dyck paths under a li...
The kernel method has proved to be an extremely versatile tool for exact and asymptotic enumeration....
This article tackles the enumeration and asymptotics of directed lattice paths (that are isomorphic ...
In queuing theory, it is usual to have some models with a "reset" of thequeue. In terms of lattice p...
ABSTRACT: This paper establishes the asymptotics of a class of random walks on N with regular but un...
International audienceFor generalized Dyck paths (i.e., directed lattice paths with any finite set o...
The field of analytic combinatorics, which studies the asymptotic behaviour ofsequences through anal...
International audienceThis article deals with the enumeration of directed lattice walks on the integ...
AbstractThis paper develops a unified enumerative and asymptotic theory of directed two-dimensional ...
AbstractWe count the number of lattice paths lying under a cyclically shifting piecewise linear boun...
In this lecture we will focus on techniques coming from probability theory and analysis to study mod...
In a companion article dedicated to the enumeration aspects, we showed how to obtain closed form for...
This paper tackles the enumeration and asymptotics of the area below directed lattice paths (walks o...
This talk focusses on the interaction between the kernel method, a powerful collection of techniques...
Lattice paths effectively model phenomena in chemistry, physics and probability theory. Asymptotic e...
International audienceWe analyze some enumerative and asymptotic properties of Dyck paths under a li...
The kernel method has proved to be an extremely versatile tool for exact and asymptotic enumeration....
This article tackles the enumeration and asymptotics of directed lattice paths (that are isomorphic ...
In queuing theory, it is usual to have some models with a "reset" of thequeue. In terms of lattice p...
ABSTRACT: This paper establishes the asymptotics of a class of random walks on N with regular but un...
International audienceFor generalized Dyck paths (i.e., directed lattice paths with any finite set o...
The field of analytic combinatorics, which studies the asymptotic behaviour ofsequences through anal...
International audienceThis article deals with the enumeration of directed lattice walks on the integ...
AbstractThis paper develops a unified enumerative and asymptotic theory of directed two-dimensional ...
AbstractWe count the number of lattice paths lying under a cyclically shifting piecewise linear boun...
In this lecture we will focus on techniques coming from probability theory and analysis to study mod...
In a companion article dedicated to the enumeration aspects, we showed how to obtain closed form for...