Many natural decision problems can be formulated as constraint satisfactionproblems for reducts $\mathbb{A}$ of finitely bounded homogeneous structures.This class of problems is a large generalisation of the class of CSPs overfinite domains. Our first result is a general polynomial-time reduction fromsuch infinite-domain CSPs to finite-domain CSPs. We use this reduction toobtain new powerful polynomial-time tractability conditions that can beexpressed in terms of the topological polymorphism clone of $\mathbb{A}$.Moreover, we study the subclass $\mathcal{C}$ of CSPs for structures$\mathbb{A}$ that are reducts of a structure with a unary language. Also thisclass $\mathcal{C}$ properly extends the class of all finite-domain CSPs. Weapply our ...
Let (L;C) be the (up to isomorphism unique) countable homogeneous structure carrying a binary branch...
Let (L; C) be the (up to isomorphism unique) countable homogeneous structure carrying a binary branc...
Let H_n denote the n-th Henson graph, i.e., the unique countable homogeneous graph with exactly thos...
Constraint satisfaction problems (CSPs) for first-order reducts of finitely bounded homogeneous stru...
The constraint satisfaction problem (CSP) over a structure A with a finite relational signature, den...
Constraint Satisfaction Problems (CSPs) are a class of decision problems where one usually fixes a s...
Constraint satisfaction problems (CSPs) form a large class of decision problems that con- tains nume...
Homogeneous structures and their reducts have been used as templates of Constraint Satisfaction Pro...
International audienceGiven a fixed constraint language Γ , the conservative CSP over Γ (denoted by ...
Abstract. Constraint Satisfaction Problems (CSP) constitute a convenient way to capture many combina...
There has been a conjectured criterion, by Manuel Bodirsky and myself, for when deciding the truth o...
The algebraic dichotomy conjecture for Constraint Satisfaction Problems (CSPs) of reducts of (innit...
The algebraic dichotomy conjecture for Constraint Satisfaction Problems (CSPs) of reducts of (infini...
International audienceIn the algebraic approach to CSP (Constraint Satisfaction Problem), the comple...
International audienceThe research of this thesis focuses on the analysis of polynomial classes and ...
Let (L;C) be the (up to isomorphism unique) countable homogeneous structure carrying a binary branch...
Let (L; C) be the (up to isomorphism unique) countable homogeneous structure carrying a binary branc...
Let H_n denote the n-th Henson graph, i.e., the unique countable homogeneous graph with exactly thos...
Constraint satisfaction problems (CSPs) for first-order reducts of finitely bounded homogeneous stru...
The constraint satisfaction problem (CSP) over a structure A with a finite relational signature, den...
Constraint Satisfaction Problems (CSPs) are a class of decision problems where one usually fixes a s...
Constraint satisfaction problems (CSPs) form a large class of decision problems that con- tains nume...
Homogeneous structures and their reducts have been used as templates of Constraint Satisfaction Pro...
International audienceGiven a fixed constraint language Γ , the conservative CSP over Γ (denoted by ...
Abstract. Constraint Satisfaction Problems (CSP) constitute a convenient way to capture many combina...
There has been a conjectured criterion, by Manuel Bodirsky and myself, for when deciding the truth o...
The algebraic dichotomy conjecture for Constraint Satisfaction Problems (CSPs) of reducts of (innit...
The algebraic dichotomy conjecture for Constraint Satisfaction Problems (CSPs) of reducts of (infini...
International audienceIn the algebraic approach to CSP (Constraint Satisfaction Problem), the comple...
International audienceThe research of this thesis focuses on the analysis of polynomial classes and ...
Let (L;C) be the (up to isomorphism unique) countable homogeneous structure carrying a binary branch...
Let (L; C) be the (up to isomorphism unique) countable homogeneous structure carrying a binary branc...
Let H_n denote the n-th Henson graph, i.e., the unique countable homogeneous graph with exactly thos...