Distributed systems today power almost all online applications. Consequently, a wide range of distributed protocols, such as consensus, and distributed cryptographic primitives are being researched and deployed in practice. This thesis addresses multiple aspects of distributed protocols and cryptographic schemes, enhancing their resilience, efficiency, and scalability. Fundamental to every secure distributed protocols are its trust assumptions. These assumptions not only measure a protocol's resilience but also determine its scope of application, as well as, in some sense, the expressiveness and freedom of the participating parties. Dominant in practice is so far the threshold setting, where at most some f out of the n parties may fail in ...