Las redes bayesianas y, en general, los modelos gráficos probabilísticos constan de un grafo que recoge relaciones de independencia condicional que se cumplen en la distribución de probabilidad que representan. Esta equivalencia entre el conocimiento que ofrece el grafo y el disponible en la distribución de probabilidad subyacente es lo que abre la puerta a enfoques algorítmicos para el cálculo de consultas probabilísticas con la red bayesiana. En este Trabajo Fin de Grado, se estudiará la relación entre los conceptos de separación gráfica e independencia condicional en redes bayesianas. Para ello, se demostrará la equivalencia entre la factorización de la distribución de probabilidad y el cumplimiento de las propiedades global y local de ...
The rules of d-separation provide a theoretical and algorithmic framework for deriving conditional i...
In this paper we present the R package gRain for propagation in graphical independence networks (for...
In this paper we define the multicausal essential graph. Such graphical model demands further proper...
Esta tesis está centrada en el campo de los modelos gráficos probabilísticos. En ella se desarrollan...
Bayesian networks are directed acyclic graphs that code the relationships of conditional dependence...
Probabilistic graphical models, such as Bayesian networks, allow representing conditional independen...
Las redes Bayesianas son un modelo gráfico probabilístico que permite representar relaciones de depe...
Rapporteurs : Marc Bouissou, EDF. R et DEvelyne Flandrin, Univ. Paris 5Eric Moulines, ENSTExaminateu...
The paper gives a few arguments in favour of use of chain graphs for description of probabilistic co...
Probabilistic graphical models constitute a fundamental tool for the development of intelligent sys...
En las últimas décadas, el aprendizaje automático ha adquirido importancia como una de las herramien...
Includes bibliographical references (page 48).San Diego State University copy: the accompanying CD-R...
Three kinds of independence are of interest in the context of Bayesian networks, namely conditional ...
. Previous algorithms for the recovery of Bayesian belief network structures from data have been eit...
Probabilistic graphical models, e.g. Bayesian Networks, have been traditionally introduced to model ...
The rules of d-separation provide a theoretical and algorithmic framework for deriving conditional i...
In this paper we present the R package gRain for propagation in graphical independence networks (for...
In this paper we define the multicausal essential graph. Such graphical model demands further proper...
Esta tesis está centrada en el campo de los modelos gráficos probabilísticos. En ella se desarrollan...
Bayesian networks are directed acyclic graphs that code the relationships of conditional dependence...
Probabilistic graphical models, such as Bayesian networks, allow representing conditional independen...
Las redes Bayesianas son un modelo gráfico probabilístico que permite representar relaciones de depe...
Rapporteurs : Marc Bouissou, EDF. R et DEvelyne Flandrin, Univ. Paris 5Eric Moulines, ENSTExaminateu...
The paper gives a few arguments in favour of use of chain graphs for description of probabilistic co...
Probabilistic graphical models constitute a fundamental tool for the development of intelligent sys...
En las últimas décadas, el aprendizaje automático ha adquirido importancia como una de las herramien...
Includes bibliographical references (page 48).San Diego State University copy: the accompanying CD-R...
Three kinds of independence are of interest in the context of Bayesian networks, namely conditional ...
. Previous algorithms for the recovery of Bayesian belief network structures from data have been eit...
Probabilistic graphical models, e.g. Bayesian Networks, have been traditionally introduced to model ...
The rules of d-separation provide a theoretical and algorithmic framework for deriving conditional i...
In this paper we present the R package gRain for propagation in graphical independence networks (for...
In this paper we define the multicausal essential graph. Such graphical model demands further proper...